рекурсивная геометрия

рекурсивная геометрия

 

рекурсивная геометрия
Широко используется для создания изображений со сложной фактурой. Каждая более мелкая деталь является уменьшенной копией более крупной детали. При увеличении масштаба изображения увеличивается количество видимых деталей. Широко известным фракталом является снежинка Коха.
[http://www.morepc.ru/dict/]

Тематики

  • информационные технологии в целом

EN

  • fractal geometry


Справочник технического переводчика. – Интент. 2009-2013.

Игры ⚽ Поможем написать курсовую

Смотреть что такое "рекурсивная геометрия" в других словарях:

  • Фрактал — Множество Мандельброта  классический образец фрактала …   Википедия

  • Фрактальная графика — Множество Мандельброта классический образец фрактала Фрактал (лат. fractus дробленый) термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре… …   Википедия

  • Фракталы — Множество Мандельброта классический образец фрактала Фрактал (лат. fractus дробленый) термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре… …   Википедия

  • П:М — Начинающим · Сообщество · Порталы · Награды · Проекты · Запросы · Оценивание География · История · Общество · Персоналии · Религия · Спорт · Техника · Наука · Искусство · Философия …   Википедия

  • Портал:Математика — Начинающим · Сообщество · Порталы · Награды · Проекты · Запросы · Оценивание География · История · Общество · Персоналии · Религия · Спорт · Техника · Наука · Искусство · Философия …   Википедия

  • ЛОГИКА В РОССИИ — эволюция современной (математической) логики в России. Кон. 19 в. и нач. 20 в. знаменуют выход логики за рамки силлогистики и появление логиков новаторов, таких как П.С. Порецкий, М.В. Каринский, Л.В. Рутковский, СИ. Поварнин, и др. Казанский… …   Философская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»